
STSM Report∗

Modeling of software failures and failure

propagation models in Software Defined

Networking (SDN)

STSM Applicant: Petra Stojsavljevic Vizarreta
Supervisors: Poul Heegaard, Carmen Mas Machuca

Home Institution: Technical University of Munich, Germany
Norwegian University of Science and Technology, Norway

November 30, 2016

1 Motivation

The goal of this STSM was to i) study the new failure modes introduced by
Software Defined Networking, and ii) provide a comprehensive model that cap-
tures complex dependencies introduced by network softwarization. The model
will serve as a baseline for design of the strategies to prevent and mitigate tech-
nology related disasters, which is the umbrella topic of the RECODIS WG3
(Technology-related disasters).

2 Classification of failures in SDN

SDN in a novel network architecture concept of decoupling control and data
plane, which brings high degree of programmability and potentially the lower
deployment cost. Control plane logic in SDN networks is concentrated in logi-
cally centralized controllers (Fig. 1).

SDN is still in its infancy, and there are not many reports on its perfor-
mance in wide scale deployments. Hence, we studied the reported problems
and suggested feature enhancements in the existing open source projects on
SDN controllers to get a grasp of the newly introduced failure modes. Here, we
describe the most representative examples, for each layer.

∗This STSM was a part of the CA COST Action CA15127 Resilient communication services
protecting end-user applications from disaster-based failures (RECODIS) WG3 (Technology-
related disasters) and was carried between 6th and 11th of November 2016

1



SDN 
Application 

layer

Control plane 
layer

Data plane 
layer

Config.

Bandwidth on 
Demand

Traffic steering

Network 
performance 

analysis

Figure 1: Layers in SDN

Note that malicious attacks and other security issues are omitted from this
analysis. Good overview of the security threat vectors can be found in [KRV13].

2.1 SDN application layer

SDN applications provide a high level instructions to the SDN controllers, e.g.
reservation of the bandwidth between the physical end points, which result in
the reconfiguration of the underlying data plane, e.g. by adding the new flow
rules. The problem occurs when two applications try to enforce two conflicting
policies, e.g. install a flow using a forbidden port. Before the application of
the new policy, the controller must apply the policy checker, to ensure it does
not violate any of the already installed rules or violate other network invariants.
Examples of network invariant violations include connectivity (creation of
loops, black holes leading to silent drops and partitioning of the network), access
policy violation, and lack of the isolation of network slices.

SDN applications can be implemented in the same name space as the con-
trollers. In this case, a crash of the application may lead to a crash of the
entire controller [CB14]. The fate sharing should be avoided by providing a
proper isolation between the layers. The application crash during the imple-
mentation of the new policy may lead to a set of the inconsistent rules in the
data plane [CB14]. The check-pointing and the rollback mechanism to the last
working configuration should be supported by the controller.

2



2.2 Control plane layer

SDN controller implements all the control plane logic as software modules, e.g.
path computation module or device manager. As such, the controller is the
subject to software aging effects, such as the accumulation of the numerical
errors and memory leaks. The authors in [LDBS15] argue that the speed of
software ageing depends of the load of the controller. Software rejuvenation
methods such as timely restart of individual processes or reboot of the whole
machine may be used to mitigate the effect of such failures [GPTT95].

Software bugs cannot be avoided in a complex software projects. It is
estimated that the professional programmer will introduce approximately 6 bugs
per thousand lines of code (LOC). Prototype controllers, like Floodligt, have
almost 100 thousand LOC, while complex project, like Open Daylight, can have
more than a million LOC. This means that the system designer may expect
anywhere between few hundreds to few thousands of bugs in the SDN controller
software. An example of the software bug are is the incorrect implementation
of Floyd-Warshal algorithm (path computation). Some bugs will be quickly
detected during the normal operation, while others may be activated only by a
very specific sequence of input parameters. The authors in [SWR+15] showed
that by isolating minimum causal sequences that lead to the controller crash,
debugging process can significantly speed up the debugging process.

The goal of the network control is to enforce invariants e.g. connectivity,
access control, isolation and virtualization. Controller bugs may cause that
some of the invariants to be violated [SWR+15]. The controller should be able
to verify that the network invariants are not violated when inserting, modifying
or deleting the rule [KZZ+13]. Disturbances during network updates may lead
to problems like black holes, forwarding rules, link overload, incorrect packet
destinations. The authors in [KPK14] provide a mechanism to roll-back to the
last working configuration if not all acknowledgements are received.

SDN controllers rely on the multi-thread processing. Bugs caused by the
concurrency issues, such multi-thread data race condition, are especially
difficult to isolate and reproduce. Memory handling issues (memory leak-
age, buffer overflow, uninitialized read, buffer recycling) also may lead to the
controller crush. Changing the environment (e.g. portion of the used memory
block or repeating the multi-thread operation with different scheduling timers)
may help with overcome such non-deterministic bugs. Such system recovery
is in general faster than the system restart or reboot [QTSZ05].

More than one controller might be deployed in the network for the scalability
and the resilience. The lack of the coordination may lead to unexpected failures.
Database deadlock happened when the switch failed to connect, because two
controllers tried to insert the key in the shared graph library (ONOS). Tempo-
rary loops and black holes may be created due to the time difference between
the switch or link down/recovery event and the notification of the controller.
This may be specially pronounced when the the controllers are physically and
the updates are additionally delayed due to synchronization. Operating on
stale state data in the shared database may lead to the suboptimal output

3



and the violation of the network invariants.
Byzantine fault tolerance relies on the controller replication. This typically

requires n ≥ 3f+1 controllers to tolerate f corrupted controllers. Corrupted
controllers may be malicious, provide a wrong output due to the software bug
or simply have its internal data structure corrupted [LLGN14, VCB+13].

SDN controller typically runs as in a virtual machine deployed on the com-
modity hardware. The failure of the underlying hardware, host OS or
a virtualization layer lead to the controller failure. Configuration errors
(erroneous management system or human error) may happen, but are expected
to occur less frequently than in the legacy systems.

2.3 Data plane layer

The forwarding devices (switches and routers) may be connected to more than
one controller for the resiliency purpose. In such cases usually one controller has
the master role, meaning it can change the configuration of the device(add and
remove the flow entries), while other controllers, have the role of the slave and
only receive the state updates. The other possibilities that all the controllers
have the equal role, but this may lead to the ownership conflicts.

Overlapping flow entries may lead to a faulty operation. If the new
forwarding rule that unintentionally has the higher priority than previously
installed DoS rule, important security policy may be violated. Switch may
become unresponsive due to the flow table overflow. Flow table overflow
caused the load balancer crush. In high load scenarios it may happen that the
data plane traffic interferes with link discovery packets, if the traffic priority is
not properly configured.

The summary of the most relevant software-based failures in SDN is provided
in the Tab. 1.

3 Modelling of software based failures

Our goal was to provide a comprehensive model of software based failures in
SDN. In order to provide a suitable model let us first recapture the services
provided by each layer, and interactions between different software modules.

The controller reacts to the events in data plane (e.g. periodic collection
of the statistics, topology changes) and high level instructions coming from
the SDN applications (e.g. bandwidth reservation, new security policy). SDN
controller consists of several software modules providing the services to the ap-
plication and data layers. The split of the functionalities might look different in
different controller architectures, but basic modules always include the topology
and statistics (maintaining the overview of the state of the network), flow rule
manager (handling flow entries), path computation and policy manager. Some
of the dependencies are illustrated in Fig. 3 as arrows, whose direction indicates
triggering events and services provided by each module.

4



Table 1: Summary of the software-based failures in SDN

Fault Activating event Failure impact Remediation

SDN application crush External Depends on design Process isolation

Software ageing Time Controller crush Restart/reboot

Software bug Input parameters Incorrect output Debugging

Concurrency issues Data race conditions Incorrect output Recovery

Memory handling issues Memory allocation Controller crush Recovery

Corrupted controller Majority corrupted Incorrect output Restart/reboot

Database deadlock Ownership conflict System crush System redesign

Cooperation issues Stale data Incorrect output –

Virt. layer failure Hypervisor crush Depends on design Reboot

Switch not reachable Failure or congestion Depends on design Repair

SDN Application layer

Control layer

Data plane events

Topology 
manager 

Statistics 
manager 

Device
manager 

Path
Comp.

Policy 
manager

Bandwidth on 
DemandTraffic steering

Topology changes: new 
device discovery, network 
failure or host migration

New Policy 
Enforcement

Network 
monitoring 

New flow 
discovered

Resource utilization 
monitoring

Figure 2: SDN controller reacts to the changes in the data plane and receives
high level instructions coming from the application layer. The controller consists
of several modules providing the services to the application and data plane
layers.

3.1 Structural model: Reliability Block Diagram

Let us consider an SDN application that tries to install the new security policy
(e.g. block the traffic coming from a particular port). The controller modules

5



involved in this service are Policy and Flow Rule manager. In order to provide
high availability, three controllers are installed on different host servers in the
cluster. At least one controller has be working properly in order to provide the
service. We assume that all the switches have to be alive and reachable for the
policy to be successfully installed.

The simplest way to illustrate this relationship structural model are the
Reliability Block Diagrams (RBD) illustrated in the Fig. 3.

Flow Rule

manager 

Host 

server

Policy 

manager

New Policy 

Enforcement

Links and 

Switches

Flow Rule

manager 

Policy 

manager

Flow Rule

manager 

Policy 

manager

Data plane 

SDN controller cluster

SDN Application

Host 

server

Host 

server

Figure 3: Reliability Block Diagram (RBD) for the New Policy Enforcement
service. In order to be successfully installed, the application, at least one out of
three controllers in the cluster, control plane links and all the switches have to
be working properly.

Aservice = Aapp ∗ACP ∗ADP

Acp = 1 − (1 −APM ∗AFRM ∗AHS)3

3.2 Dynamic model: Markov model

Availability of the host server and switches might be given in their product
catalogues, but the availability of the software modules is difficult to estimate,
because it depends on the specific operational environment, and many param-
eters that cannot be estimated before its deployment (e.g. how many bugs are
left in the software after the testing).

Software modules have different failure modes, each one of them having a
different failure intensity and different reparation rate. Based on the analysis
on software-based provided in the previous section, we distinguish between four
failure modes: deterministic software bug (BG) that can be only repaired by
debugging, temporary errors (TE) due to the non-deterministic bugs, such as
data race conditions, numerical errors (NE) due to the software ageing, and

6



hardware errors (HW) that happen less frequently, but take longer time to fix.
The dynamics of these failures can be captured by Markov models (Fig. 4).

OK

BG

NETE

λbug µdebug

λage

µrejuvλnd

µrecov

λbugλbug

Figure 4: Markov model for different controller software modules. We distin-
guish four failure modes: deterministic software bug (BG), temporary errors
(TE) due to the non-deterministic bugs, numerical errors (NE) due to the soft-
ware ageing, and hardware errors (HW).

The steady state probabilities are:

p =
[
pOKpTEpNEpBG

]
Steady state probabilities can be found as the solution of the system of

equations:

pOK + pTE + pNE + pBG = 1

p.Q = 0

Q =


−λnd − λage − λbug λnd λage λBG

µrecov −µrecov − λbug 0 λbug
µrejuv 0 −µrejuv − λbug λbug
µdebug 0 0 −µdebug


Availability of the software module can be expressed then as:

ASW = pOK =
µdebug(µrecov + λbug)(µrejuv + λbug)

λ(λbug + µdebug)

where:

λ = λ2bug + λageλbug + λndλbug + λbugµrecov + λageµrecov+

λbugµrejuv + λndµrejuv + µrecovµrejuv

7



There are two main drawbacks of using the Markov models in system de-
pendability analysis. First, adding the complexity (e.g. state synchronization
within the cluster) would lead to the state explosion, which makes it difficult to
obtain the closed form solution. Second, Markov models a memoryless property
of the underlying stochastic process, which does not always hold in the described
system1.

Next steps and future work

The models presented in this report will serve as the basis for our future work
on the resilience of the SDN based networks.

The results of this collaboration will be published in the suitable conference.
We identified RNDM 2017 - 9th International Workshop on Resilient Networks
Design and Modeling as our target conference.

1Several Software Reliability Growth Models (SRGM) models have been proposed to model
the time between software bug failures

8



References

[CB14] Balakrishnan Chandrasekaran and Theophilus Benson. Tolerating
sdn application failures with legosdn. In Proceedings of the 13th
ACM Workshop on Hot Topics in Networks, page 22. ACM, 2014.

[GPTT95] Sachin Garg, Antonio Puliafito, Miklós Telek, and Kishor S Trivedi.
Analysis of software rejuvenation using markov regenerative stochas-
tic petri net. In Software Reliability Engineering, 1995. Proceedings.,
Sixth International Symposium on, pages 180–187. IEEE, 1995.

[KPK14] Maciej Kuzniar, Peter Peresini, and Dejan Kostić. Providing reliable
fib update acknowledgments in sdn. In Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments
and Technologies, pages 415–422. ACM, 2014.

[KRV13] Diego Kreutz, Fernando Ramos, and Paulo Verissimo. Towards se-
cure and dependable software-defined networks. In Proceedings of
the second ACM SIGCOMM workshop on Hot topics in software
defined networking, pages 55–60. ACM, 2013.

[KZZ+13] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
P Brighten Godfrey. Veriflow: verifying network-wide invariants in
real time. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages
15–27, 2013.

[LDBS15] Francesco Longo, Salvatore Distefano, Dario Bruneo, and Marco
Scarpa. Dependability modeling of software defined networking.
Computer Networks, 83:280–296, 2015.

[LLGN14] He Li, Peng Li, Song Guo, and Amiya Nayak. Byzantine-resilient
secure software-defined networks with multiple controllers in cloud.
IEEE Transactions on Cloud Computing, 2(4):436–447, 2014.

[QTSZ05] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan
Zhou. Rx: treating bugs as allergies—a safe method to survive
software failures. In Acm sigops operating systems review, volume 39,
pages 235–248. ACM, 2005.

[SWR+15] Colin Scott, Andreas Wundsam, Barath Raghavan, Aurojit Panda,
Andrew Or, Jefferson Lai, Eugene Huang, Zhi Liu, Ahmed El-
Hassany, Sam Whitlock, et al. Troubleshooting blackbox sdn control
software with minimal causal sequences. ACM SIGCOMM Com-
puter Communication Review, 44(4):395–406, 2015.

[VCB+13] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani,
Lau Cheuk Lung, and Paulo Verissimo. Efficient byzantine fault-
tolerance. IEEE Transactions on Computers, 62(1):16–30, 2013.

9


