
Adding throughput and link usage as metrics to

the network robustness simulator

Student: Sergio Gomez Cosgaya
Supervisors: Carmen Mas Machuca, Jose Luis Marzo Lazaro

Home institution: University of Girona (Spain)
Host institution: Technical University of Munich (Germany)

Working group: Technology-related disasters (WG3)

From April 3, 2017 to April 11, 2017

Motivation

This STSM aims at extending an existing network robustness analysis tool de-
veloped by UdG1 to consider some networking metrics by integrating routing
algorithms developed by TUM2 . In this way, the extended tool is be able to
evaluate the robustness of any network for different attack models and using
various routing algorithms. The new integrated networking metrics are the
throughput and the link usage.

1 Previous background

This section introduces the previous work performed by UdG and TUM, giving
a basic background of topics that help the understanding of what is done during
the STMS.

1.1 Network robustness simulator, UdG

The BCDS (Broadband Communication and Distributed Systems) research group
at UdG has been working for some years in analysing how robust a network is,
that means how the robustness is affected against an attack. To achieve this,
some metrics are used with different considered failure scenarios that can help
to understand how the network reacts against different kind of attacks.

1University of Girona
2Technical University of Munich

1



1.1.1 Robustness metrics

The available metrics in the simulator are organized in different groups, depend-
ing on what they can tell us regarding the robustness. There are structural,
fragmentation, connectivity and centrality metrics.

First, structural metrics measure the classical parameters of a graph. Some
of them measure the density (such as nodal degree) and others the size, such as
the diameter. All considered structural metrics are:

• Average nodal degree

• Heterogeneity

• Average shortest path length

• Diameter

• Efficiency

• Effective resistance

• Number of spanning trees

• Clustering coefficient

• Assortativity

• Symmetry radio

• Largest eigenvalue

Fragmentation metrics address the number of components of a network. It
should be taken into account that they are useless for connected networks (i.e.
they do not measure anything until the network is unconnected). Available
fragmentation metrics are:

• Largest connected component

• Fractional size largest component

• Average two terminal reliability

• Degree of fragmentation

Connectivity metrics measure how difficult is to break the network when
removing elements. In contrast to fragmentation metrics, they can not be used
when the network is fragmented. All available connectivity metrics are:

• Edge connectivity

2



• Vertex connectivity

• Algebraic connectivity

• Natural connectivity

Centrality metrics can measure how important are the elements in the graph,
i.e. if they are at the middle of most of the paths. All available centrality metrics
are:

• Degree centrality

• Node betweenness centrality

• Edge betweenness centrality

• Closeness centrality

• Eigenvector centrality

1.1.2 Failures scenarious

Depending on the generated kind of attacks over a network, different scenarios
are obtained. In our simulator, it is possible to attack nodes or edges using
random, targeted and epidemics attacks:

• Random attacks:
In random attacks, attacked elements are selected randomly, even if el-
ements attacked are nodes or edges. Theoretically, this method is the
less effective one, cause randomizing doesn’t look for a way to make more
damage to the network.

Figure 1: Random attack to nodes example. Each node is selected randomly

• Targeted attacks:
Unlike randomizing, targeting attacks look for the most important ele-
ments in network and select them. For example, the node with a larger

3



node’s betweenness centrality is selected when attacking nodes and the
edge with a larger edge’s betweenness centrality should be selected in case
of attacking edges. Obviously, the parameter used to select the desired
elements can be changed.

In the targeted method there are two options. On one hand, there are
targeted simultaneous attacks where all attacked elements are selected
in one step (e.g. the 10 nodes with more node’s betweenness centrality),
on the other hand, targeted sequential attacks where attacked elements
are selected step by step sequentially looking for the most important el-
ement of the network every time after attacking some other before (e.g.
look for the node with more node’s betweenness centrality after removing
previously other elements).

Figure 2: Targeted attack to nodes example. Each node is selected by its
importance inside the network. Note that although it can looks like random it
selects the central nodes.

• Epidemic attacks:
When using the epidemic method, the attack simulates an epidemic spread
over the network, that is selecting randomly the first infected node and
then sequentially select nodes that are connected to an infected node fol-
lowing a probabilistic function. This method only works with node attacks
because it has no sense to have infected edges.

Figure 3: Epidemic attack to nodes example. Next selected node has to be
connected to an infected node.

4



1.1.3 The robustness surface

The simulator provides as a result a robustness surface for each experiment.
That is, a set of attacks combinations (defined as M) to a single network with
a number of elements attacked (defined as P). The resulting robustness surface
will be a PxM table:

Figure 4: Robustness surface sample. X axis represents samples number (M)
and Y axis represents the amount of elements attacked (P).

Each cell will tell us the robustness value3 of that combination M and the
number of elements attacked p (e.g. if P is 30% of elements attacked, there
will be a p row when attacking 1%, 2%, etc.). Also, it is colourized within a
red-green range4 which helps comparing in a fast way two or more simulations.

1.2 Proposed routing and networking metrics, TUM

The Department of Electrical and Computer Engineering of TUM has been
working developing the algorithm for computing the survived flows and the link
utilization inside a network when some elements are removed from it. TUM’s
work is based on SNDLib5 networks and demands data.

1.2.1 Optimization algorithm

A network is described as a graph G = (V,E), where V denotes the nodes
of the network that can generate or switch the traffic, and E represents the
communication links. The links (i,j) have a limited bandwidth Cij . The flows
in the traffic demand are described as d = (sd, td, cd), where sd and td denote

3Robustness maximum value is 1, which it means the network is still totally robust and
it is not damaged. When damaging it, robustness value decreases and values equal to or less
than 0 mean the network is fully damaged and it should not be operative

4The range starts at 0 with red colour and ends at 1 with green colour. White colours
mean robustness value is less than 0

5SNDlib is a library of test instances for Survivable fixed telecommunication Network
Design. Official website: http://sndlib.zib.de/

5



the source and destination of the traffic demand, and cd denotes the data rate
of the flow. Binary variables zij,d indicate if the edge (i, j) carries flow d, and
xd indicate if the flow d is accepted.

The objective is to maximize the throughput of the survived flows, while
minimizing the sum of each demand’s path length. Small weight is assigned to
the number of used links, to ensure shortest possible paths ε� 1.

max
∑
d∈D

xdcd − ε
∑
ij∈E

∑
d∈D

zij,dcd

Capacity and flow conservation constraints have to hold.∑
d∈D

zij,dcd ≤ Cij ;∀(i, j) ∈ E;

zij,d ≤ xd;∀(i, j) ∈ E;∀d ∈ D;

∑
ij∈E;i=n

zij,d −
∑

ij∈E;j=n

zij,d = sn,dxd − tn,dxd;∀n ∈ V ;∀d ∈ D;

We also prevent the flow split, by allowing at most one incoming and one
outgoing link to be used by the same flow:∑

ij∈E;j=n

zij,d ≤ 1;∀n ∈ V ;∀d ∈ D;

∑
ij∈E;i=n

zij,d ≤ 1;∀n ∈ V ;∀d ∈ D;

Where sd and td are helper functions defined as:

sd =

{
1, if n is a source of flow d

0, otherwise

td =

{
1, if n is a destination of flow d

0, otherwise

1.2.2 Throughput

When optimization algorithm finishes, it is possible to calculate the network
throughput metric value that is defined as the sum of all accepted flows:

Throughput =
∑
d∈D

xdcd

Throughput metric represents numerically the whole quantity of data carried
through the network.

6



1.2.3 Link usage

Link usage average metric value can be calculated from optimization result. It
is defined as the sum of the throughput carried by every edge divided by the
sum of edges:

LinkUtilization =
∑
d∈D

∑
ij∈E

zij,dcd/
∑
ij∈E

Ci,j

Average link usage represents the usage percentage of edges, saying if net-
work near to its maximum capacity or if it is not in use.

2 Description of the work done

The main goal of the STSM was to add throughput and link usage metrcis from
TUM inside UdG simulator. To achieve it, some steps had to been done. Main
steps started in manually pass the data and ended to integrate TUM’s code into
simulator’s code.

2.1 Integration process

Before detailing every step, it is important to understand how all final process
work. First, a network which is attacked with one of the methods explained be-
low is selected. Then, there is a failure scenario from which all desired metrics
are calculated (including throughput and link usage) for every PxM combi-
nation and finally from these metrics the robustness surface is calculated as
explained in [MCSS+14].

7



Select network Generate attacks

PxM fail scenarios

Calculate metrics

Make robustness surface

Figure 5: Main process steps. For generating fail scenarios both selected initial
network and generated attacks are used, then each fail scenario has its own
network which it will always be the initial network less the elements attacked.

2.2 Manual process

We started implementing the process shown in Figure 5 manually. Initially,
in UdG, fail scenarios were generated and saved into a CSV file, then these
attacks were sent to TUM so they could execute the algorithm to calculate the
throughput and link usage values. When the execution finished, TUM saved
all the results of fail scenarios throughput and link usage metrics in another
CSV file and sent it back to UdG. Finally, UdG added these results into their
simulator to complete the experiment. The process has been depicted in Figure
6.

Generate fail scenarios (UdG)

Calculate metrics (TUM)

Make robustness surface (UdG)

elements-attacked.csv

metrics-results.csv

Figure 6: Manual process steps.

8



Obviously, this process had drawbacks as the time lost when sending the
CSV files from each one to each other, but it was necessary to check that the
process could be done successfully. When it worked and those relevant expected
results were achieved, e.g. comparing how demands are affected in a network
against different attack types, the next step was adding these metrics into the
simulator.

2.3 Integrating TUM code into the simulator

The main work done during the STSM was related to integrate TUM algorithm
code into our UdG simulator. It had some difficulties because the simulator
core is written in R6 whereas TUM throughput and link usage based routing
algorithms are written in Python7. Although the conversion from Python to
R was initially considered, it was discarded in order to facilitate future code
updates. So finally, the decided process is the following:

R SIMULATOR PYTHON CODE

Generate fail scenarios

For each PxM fail scenario

Calculate TUM metrics

Join all scenarios results

Make robustness surface

System call with parameters

Fail scenario metrics results

Figure 7: Interaction between R simulator and Python TUM script.

The R simulator generates all fail scenarious and for each one makes a system
call to execute the Python script with some parameters such as the path to the

6R is a free software environment for statistical computing and graphics. Official website:
https://www.r-project.org/

7Python is a widely used high-level programming language for general-purpose program-
ming. Official website: https://www.python.org

9



network file inside the server and the list with all elements attacked of the fail
scenario. Then the Python algorithm is executed returning the throughput and
link usage to R simulator letting it resume the process.

2.4 Defining different metrics and routing strategies

After the code integration, some time was spent to analyse other metrics and
routing strategies related to TUM work done that could be relevant inside a
robustness background. TUM algorithm calculated throughput and link usage
metrics based on the number of survived flows using a full restoration
algorithm. We decided to add the capability of measure these metrics using
different metrics aspects and routing the flows with others methods, some of
them were implemented during the STSM and some others have been set as
future work.

2.4.1 Traffic related relevant metrics

In this section, traffic related relevant metrics to use and implement into our
simulator are detailed:

• Number of survived flows:
Here goal is to maximize the number of survived flows, which can route
more flows (and drop less) but the total sum of throughput routed can
not be optimal, e.g. if you have many low demand flows, then other high
demand flows would be discarded.

• Survived throughput:
Maximizing the sum of survived throughput can help routing most of the
demanded data but many flows can be discarded in case they have a low
demand value.

• Link utilization:
When maximizing the link utilization, it is intended to distribute all traffic
among all edges in the most homogeneous way.

• Path extension:
An other option is to minimize the average paths length, so our solution
will be the one of paths with less hopes between source and destination
node.

Maximizing the number of survived flows was the first developed goal met-
ric by TUM and the survived throughput option was implemented during the
STSM. Link utilization and path extension options are going to be implemented
in a near future.

2.4.2 Routing algorithms

We can use several routing algorithms to route flows through the network. Dur-
ing the STSM two of them were implemented and another one has been marked

10



as next routing algorithm to implement. Also, other routing algorithms have
been thought to include into the simulator in future steps. The main routing
algorithms are:

• Unprotected:
This routing algorithm doesn’t try to reroute any flow after it is been
removed. Obviously it is the worst case but it has no execution cost.

• Full restoration:
When using full restoration a routing of all flows for each fail scenario,
that means removing all previously routed flows and reroute all through
the network after some network elements have been removed. It is the most
efficient algorithm but the execution cost/time is a relevant drawback.

• Partial restoration:
The partial restoration algorithm is a more efficient version of the full
restoration algorithm. It improves the execution time by not routing again
all flows in every fail scenario by routing only affected flows with available
edges capacity after network elements removal.

Unprotected and full restoration algorithms were successfully implemented
during the STSM and the partial restoration algorithm developing has been
starting and the end of stay. As it is said, there are other algorithms to be
implemented in future steps. One example of them is the shared protected
algorithm where two non related paths8 share the same protected path9.

3 Preliminary results

As a simple demonstration of the work done, an execution over some networks as
Abilene, cost266, Germany50 and India35 available in SNDLib repository10 was
done and the robustness surface using some UdG metrics and both throughput
and link usage TUM metrics was generated:

8Two paths are not related if they don’t share any node or edge between them
9A shared path is a pre-calculated path that will be used automatically when default path

is not available
10SNDLib official repository: http://sndlib.zib.de/home.action

11



Figure 8: Comparison of simple execution results using unprotected routing (a)
and full restoration routing (b). Both executions are over the cost266 network
against random attacks to nodes. X axis represents samples number (M) and
Y axis represents the amount of elements attacked (P).

In figure 8 (b) can be seen the robustness surface generated using the unpro-
tected routing algorithm and at right there is the robustness surface resulting
when routing with the full restoration algorithm. Obviously the first one (a)
has a worse result (less green means less robust) because unprotected routing
does not recourse any failed flow.

4 Future work

The main future work is adding to the simulator the metrics and routing meth-
ods detailed in previous sections. Then in order to write a publication, a more
in depth robustness analysis of networks against the mentioned attacks in this
document will be done using the new added throughput and link usage metrics.

A more in depth analysis about how different networks react to different
attacks using the proposed throughput and link usage metrics calculated will
be carried out. Using the obtained results will help to write the mentioned
publication .

References

[AJB00] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error
and attack tolerance of complex networks. nature, 406(6794):378–
382, 2000.

[DC04] Anthony H Dekker and Bernard D Colbert. Network robustness
and graph topology. In Proceedings of the 27th Australasian confer-
ence on Computer science-Volume 26, pages 359–368. Australian
Computer Society, Inc., 2004.

12



[MCSS+14] Marc Manzano Castro, Faryad Sahneh, Caterina Scoglio, Eusebi
Calle Ortega, and Josep Llúıs Marzo i Lázaro. Robustness surfaces
of complex networks. Scientific Reports, 2014, núm. 4, P. 6133,
2014.

[MCTP+13] M. Manzano, E. Calle, V. Torres-Padrosa, J. Segovia, and
D. Harle. Endurance: A new robustness measure for complex
networks under multiple failure scenarios. Computer Networks,
57(17):3641 – 3653, 2013.

[SH+10] James P.G. Sterbenz, David Hutchison, Egemen K. etinkaya, Ab-
dul Jabbar, Justin P. Rohrer, Marcus Schller, and Paul Smith.
Resilience and survivability in communication networks: Strate-
gies, principles, and survey of disciplines. Computer Networks,
54(8):1245 – 1265, 2010. Resilient and Survivable networks.

[SSYS10] Ali Sydney, Caterina Scoglio, Mina Youssef, and Phillip Schumm.
Characterising the robustness of complex networks. International
Journal of Internet Technology and Secured Transactions, 2(3-
4):291–320, 2010.

13


